Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Alzheimers Dis ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38669540

RESUMEN

Background: Cognitive deficits observed in Alzheimer's disease (AD) patients have been correlated with altered hippocampal activity. Although the mechanism remains under extensive study, neurofibrillary tangles and amyloid plaques have been proposed as responsible for brain activity alterations. Aiming to unveil the mechanism, researchers have developed several transgenic models of AD. Nevertheless, the variability in hippocampal oscillatory alterations found in different genetic backgrounds and ages remains unclear. Objective: To assess the oscillatory alterations in relation to animal developmental age and protein inclusion, amyloid-ß (Aß) load, and abnormally phosphorylated tau (pTau), we reviewed and analyzed the published data on peak power, frequency, and quantification of theta-gamma cross-frequency coupling (modulation index values). Methods: To ensure that the search was as current as possible, a systematic review was conducted to locate and abstract all studies published from January 2000 to February 2023 that involved in vivo hippocampal local field potential recording in transgenic mouse models of AD. Results: The presence of Aß was associated with electrophysiological alterations that are mainly reflected in power increases, frequency decreases, and lower modulation index values. Concomitantly, pTau accumulation was associated with electrophysiological alterations that are mainly reflected in power decreases, frequency decreases, and no significant alterations in modulation index values. Conclusions: In this study, we showed that electrophysiological parameters are altered from prodromal stages to the late stages of pathology. Thus, we found that Aß deposition is associated with brain network hyperexcitability, whereas pTau deposition mainly leads to brain network hypoexcitability in transgenic models.

2.
Org Biomol Chem ; 22(16): 3328-3339, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38584463

RESUMEN

Fullerene C60 and its malonate derivatives, produced via the Bingel-Hirsch reaction, have displayed promising properties against various diseases. These molecules have great therapeutic potential, but their broad use has been limited due to poor aqueous solubility and toxicity caused by accumulation. In this study, we synthesized new malonates and malonamides attached to first- and second-generation polyester dendrons using click chemistry (CuAAC). These dendrons were then linked at C60 through the Bingel-Hirsch reaction, resulting in an amphiphilic system that retains the hydrophobic nature of C60. The dendronized malonate derivatives showed good reaction yields for the Bingel-Hirsch mono-adducts and were easier to work with than the corresponding malonamides. However, the malonamide derivatives, which were obtained through a multistep reaction sequence, showed moderate yields in the Bingel-Hirsch reaction. Surprisingly, removing acetonide protecting groups from dendritic architectures was more challenging than anticipated, likely due to product decomposition. Only the corresponding free malonate derivatives 25 and 26 were obtained, but in a low yield due to decomposition under the reaction conditions. Meanwhile, it was not possible to obtain the corresponding malonamide derivatives 27 and 28. Currently, efforts are being made to improve the production of the desired molecules and to design new synthesis routes that allow direct access to the desired poly-hydroxylated derivatives. These derivatives will be evaluated as multitarget ligands against Alzheimer's disease, through their use as inhibitors of amyloid ß-peptide aggregation, acetylcholinesterase modulators, and antioxidants.

3.
Antioxidants (Basel) ; 13(3)2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38539791

RESUMEN

Aging is characterized by increased reactive species, leading to redox imbalance, oxidative damage, and senescence. The adverse effects of alcohol consumption potentiate aging-associated alterations, promoting several diseases, including liver diseases. Nucleoredoxin (NXN) is a redox-sensitive enzyme that targets reactive oxygen species and regulates key cellular processes through redox protein-protein interactions. Here, we determine the effect of chronic alcohol consumption on NXN-dependent redox interactions in the liver of aged mice. We found that chronic alcohol consumption preferentially promotes the localization of NXN either into or alongside senescent cells, declines its interacting capability, and worsens the altered interaction ratio of NXN with FLII, MYD88, CAMK2A, and PFK1 proteins induced by aging. In addition, carbonylated protein and cell proliferation increased, and the ratios of collagen I and collagen III were inverted. Thus, we demonstrate an emerging phenomenon associated with altered redox homeostasis during aging, as shown by the declining capability of NXN to interact with partner proteins, which is enhanced by chronic alcohol consumption in the mouse liver. This evidence opens an attractive window to elucidate the consequences of both aging and chronic alcohol consumption on the downstream signaling pathways regulated by NXN-dependent redox-sensitive interactions.

4.
Environ Sci Pollut Res Int ; 31(9): 13046-13062, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38240974

RESUMEN

Green synthesis (GS), referred to the synthesis using bioactive agents such as plant materials, microorganisms, and various biowastes, prioritizing environmental sustainability, has become increasingly relevant in international scientific practice. The availability of plant resources expands the scope of new exploration opportunities, including the evaluation of new sources of organic extracts, for instance, to the best of our knowledge, no scientific articles have reported the synthesis of zinc oxide nanoparticles (ZnO NPs) from organic extracts of T. recurvata, a parasitic plant very common in semiarid regions of Mexico.This paper presents a greener and more efficient method for synthesizing ZnO NPs using T. recurvata extract as a reducing agent. The nanoparticles were examined by different techniques such as UV-vis spectroscopy, X-ray diffraction, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and BET surface analysis. The photocatalytic and adsorptive effect of ZnO NPs was investigated against methylene blue (MB) dye in aqueous media under sunlight irradiation considering an equilibrium time under dark conditions. ZnO nanoparticles were highly effective in removing MB under sunlight irradiation conditions, showing low toxicity towards human epithelial cells, making them promising candidates for a variety of applications. This attribute fosters the use of green synthesis techniques for addressing environmental issues.This study also includes the estimation of the supported electric field distributions of ZnO NPs in their individual spherical or rounded shapes and their randomly oriented organization, considering different diameters, by simulating their behavior in the visible wavelength range, observing resonant enhancements due to the strong light-matter interaction around the ZnO NPs boundaries.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Tillandsia , Óxido de Zinc , Humanos , Óxido de Zinc/química , Nanopartículas del Metal/química , Extractos Vegetales/química , Nanopartículas/química , Microscopía Electrónica de Rastreo , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
5.
J Alzheimers Dis ; 87(2): 741-759, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35367963

RESUMEN

BACKGROUND: Amyloid-ß (Aß) fibrils induce cognitive impairment and neuronal loss, leading to onset of Alzheimer's disease (AD). The inhibition of Aß aggregation has been proposed as a therapeutic strategy for AD. Pristine C60 has shown the capacity to interact with the Aß peptide and interfere with fibril formation but induces significant toxic effects in vitro and in vivo. OBJECTIVE: To evaluate the potential of a series of C60 multiadducts to inhibit the Aß fibrillization. METHODS: A series of C60 multiadducts with four to six diethyl malonyl and their corresponding disodium-malonyl substituents were synthesized as individual isomers. Their potential on Aß fibrillization inhibition was evaluated in vitro, in cellulo, and silico. Antioxidant activity, acetylcholinesterase inhibition capacity, and toxicity were assessed in vitro. RESULTS: The multiadducts modulate Aß fibrils formation without inducing cell toxicity, and that the number and polarity of the substituents play a significant role in the adducts efficacy to modulate Aß aggregation. The molecular mechanism of fullerene-Aß interaction and modulation was identified. Furthermore, the fullerene derivatives exhibited antioxidant capacity and reduction of acetylcholinesterase activity. CONCLUSION: Multiadducts of C60 are novel multi-target-directed ligand molecules that could hold considerable promise as the starting point for the development of AD therapies.


Asunto(s)
Enfermedad de Alzheimer , Fulerenos , Acetilcolinesterasa , Enfermedad de Alzheimer/tratamiento farmacológico , Amiloide/química , Péptidos beta-Amiloides , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Fulerenos/farmacología , Humanos , Fragmentos de Péptidos/uso terapéutico
6.
Bioelectromagnetics ; 43(4): 225-244, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35437793

RESUMEN

Homogeneous extremely low-frequency electromagnetic fields (ELF-EMFs) alter biological phenomena, including the cell phenotype and proliferation rate. Heterogenous vortex magnetic fields (VMFs), a new approach of exposure to magnetic fields, induce systematic movements on charged biomolecules from target cells; however, the effect of VMFs on living systems remains uncertain. Here, we designed, constructed, and characterized an ELF-VMF-modified Rodin's coil to expose SH-SY5Y cells. Samples were analyzed by performing 2D-differential-gel electrophoresis, identified by MALDI-TOF/TOF, validated by western blotting, and characterized by confocal microscopy. A total of 106 protein spots were differentially expressed; 40 spots were downregulated and 66 were upregulated in the exposed cell proteome, compared to the control cell proteome. The identified spots are associated with cytoskeleton and cell viability proteins, and according to the protein-protein interaction network, a significant interaction among them was found. Our data revealed a decrease in cell survival associated with apoptotic cells without effects on the cell cycle, as well as evident changes in the cytoskeleton. We demonstrated that ELF-VMFs, at a specific frequency and exposure time, alter the cell proteome and structurally affect the target cells. This is the first report showing that VMF application might be a versatile system for testing different hypotheses in living systems, using appropriate exposure parameters.© 2022 Bioelectromagnetics Society.


Asunto(s)
Neuroblastoma , Proteoma , Apoptosis , Línea Celular , Citoesqueleto , Campos Electromagnéticos , Humanos , Campos Magnéticos
7.
J Ethnopharmacol ; 292: 115239, 2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35358623

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Petiveria alliacea L. is traditionally used as a folk medical herb in different regions of the world to treat different ailments including those related to the central nervous system. Previous studies have proved that extracts from P. alliacea show improvement in memory and learning process. AIM OF THE STUDY: To study extracts, fractions, subfractions and isolated compounds from P. alliacea on acetylcholinesterase inhibition and antioxidant activity. MATERIAL AND METHODS: Extracts obtained with different polarity solvents and fractions from P. alliacea were evaluated for their inhibitory activity on acetylcholinesterase by Ellman method. This screening allowed the selection of the methanol fraction as the most active and continued a bio-guided study. The compounds identified in methanol fraction were analyzed by high performance liquid chromatography-mass spectrometry (HPLC-MS). Identification of (E)-Tagetone was performed by 1H and 13C NMR spectra. Moreover, the antioxidant activity was evaluated by DPPH and ABTS methods, and the cell viability was assessed by WST-1 method. RESULTS: Two extracts of different polarity were obtained from P. alliacea. The methanol extract and its fraction showed an inhibitory activity on acetylcholinesterase; however, methanol fraction was found to be most potent with 86.5 % AChE inhibition. The methanol fraction also showed antioxidant activity and was not toxic on SH-SY5Y cells. Different compounds including capreoside, narcissin, indane, (-)-isocaryophyllene, (-)-ß-pinene, (E)-tagetone and peonidin 3-O-sambubioside 5-O-glucoside were identified. CONCLUSION: This is the first report indicating that P. alliacea methanol fraction and its subfractions bear acetylcholinesterase inhibition and antioxidant activity properties. This work establishes the basis for further studies in the development of new therapies for neurodegenerative disorders such as Alzheimer 's disease.


Asunto(s)
Acetilcolinesterasa , Phytolaccaceae , Antioxidantes/farmacología , Metanol/química , Phytolaccaceae/química , Extractos Vegetales/uso terapéutico
8.
Electromagn Biol Med ; 40(1): 191-200, 2021 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-33043710

RESUMEN

Plaques formed by abnormal accumulation of amyloid ß-peptide (Aß) lead to onset of Alzheimer's disease (AD). Pharmacological treatments do not reduce Aß aggregation neither restore learning and memory. Noninvasive techniques have emerged as an alternative to treat AD, such as stimulation with electromagnetic fields (EMF) that decrease Aß deposition and reverses cognitive impairment in AD mice, even though some studies showed side effects on parallel magnetic fields stimulation. As a new approach of magnetic field (MF) stimulation, vortex magnetic fields (VMF) have been tested inducing a random movement of charged biomolecules in cells, promoting cell viability and apparently safer than parallel magnetic fields. In this study we demonstrate the effect of VMF on Aß aggregation. The experimental strategy includes, i) design and construction of a coil capable to induce VMF, ii) evaluation of VMF stimulation on Aß peptide induced-fibrils-formation, iii) evaluation of VMF stimulation on SH-SY5Y neuroblastoma cell line in the presence of Aß peptide. We demonstrated for the first time that Aß aggregation exposed to VMF during 24 h decreased ~ 86% of Aß fibril formation compared to control. Likewise, VMF stimulation reduced Aß fibrils-cytotoxicity and increase SH-SY5Y cell viability. These data establish the basis for future investigation that involve VMF as inhibitor of Aß-pathology and indicate the therapeutic potential of VMF for AD treatment.


Asunto(s)
Péptidos beta-Amiloides/química , Péptidos beta-Amiloides/toxicidad , Campos Magnéticos , Agregado de Proteínas , Animales , Línea Celular Tumoral , Supervivencia Celular , Humanos , Ratones
9.
J Alzheimers Dis ; 65(4): 1185-1207, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30124450

RESUMEN

Abnormal fibrillary aggregation of tau protein is a pathological condition observed in Alzheimer's disease and other tauopathies; however, the presence and pathological significance of early non-fibrillary aggregates of tau remain under investigation. In cell and animal models expressing normal or modified tau, toxic effects altering the structure and function of several membranous organelles have also been reported in the absence of fibrillary structures; however, how these abnormalities are produced is an issue yet to be addressed. In order to obtain more insights into the mechanisms by which tau may disturb intracellular membranous elements, we transiently overexpressed human full-length tau and several truncated tau variants in cultured neuroblastoma cells. After 48 h of transfection, either full-length or truncated tau forms produced significant fragmentation of the Golgi apparatus (GA) with no changes in cell viability. Noteworthy is that in the majority of cells exhibiting dispersion of the GA, a ring-shaped array of cortical or perinuclear microtubule (Mt) bundles was also generated under the expression of either variant of tau. In contrast, Taxol treatment of non-transfected cells increased the amount of Mt bundles but not sufficiently to produce fragmentation of the GA. Tau-induced ring-shaped Mt bundles appeared to be well-organized and stable structures because they were resistant to Nocodazole post-treatment and displayed a high level of tubulin acetylation. These results further indicate that a mechanical force generated by tau-induced Mt-bundling may be responsible for Golgi fragmentation and that the repeated domain region of tau may be the main promoter of this effect.


Asunto(s)
Citoesqueleto/metabolismo , Aparato de Golgi/metabolismo , Aparato de Golgi/ultraestructura , Microtúbulos/metabolismo , Neuroblastoma/ultraestructura , Proteínas tau/metabolismo , Brefeldino A/farmacología , Metabolismo de los Hidratos de Carbono/fisiología , Línea Celular Tumoral , Supervivencia Celular/fisiología , Regulación Neoplásica de la Expresión Génica/genética , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Mutación/genética , Neuroblastoma/patología , Nocodazol/farmacología , Compuestos Orgánicos/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Transfección , Proteínas tau/genética
10.
Histol Histopathol ; 33(12): 1299-1309, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29923593

RESUMEN

The indiscriminate use of herbal products is increasingly growing worldwide; nonetheless consumers are not warned about the potential health risks that these products may cause. Hintonia latiflora (Hl) is a tree native to the American continent belonging to the Rubiaceae family and its stem bark is empirically used mainly to treat diabetes and malaria; supplements containing Hl are sold in America and Europe without medical prescription, thus scientific information regarding its toxicity as a consequence of a regular consumption is needed. In the present study, the histopathological effect of 200 and 1000 mg/kg of HI methanolic stem bark extract (HlMeOHe) was evaluated in the small bowel, liver, pancreas, kidneys and brain of CD-1 male mice after oral sub-acute treatment for 28 days. No histopathological alterations were observed in the brain and small bowel of the treated animals; however, mice presented diarrhea from day 2 of treatment with both doses. No histological changes were observed in the tissues collected from the animals treated with 200 mg/kg, except for the liver that depicted periportal hepatitis. Animals treated with the higher dose showed in the liver sections hydropic degeneration, hepatitis and necrosis, kidney sections depicted tubular necrosis and in pancreas sections, hydropic degeneration of the pancreatic islets was observed. In conclusion, HlMeOHe damaged the liver with an oral dose of 200 mg/kg, and at 1000 mg/kg injured the kidneys and pancreas of the CD-1 male mice.


Asunto(s)
Suplementos Dietéticos/toxicidad , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Páncreas/efectos de los fármacos , Extractos Vegetales/toxicidad , Animales , Riñón/patología , Hígado/patología , Masculino , Ratones , Páncreas/patología , Corteza de la Planta/toxicidad , Rubiaceae
11.
J Alzheimers Dis ; 63(2): 821-833, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29689717

RESUMEN

Dementias including Alzheimer's disease (AD) are multifactorial disorders that involve several different etiopathogenic mechanisms. Cerebral ischemia has been suspected in the altered regulation of protein kinases and phosphatases that leads to hyperphosphorylation of tau and further neurofibrillary pathology, a key hallmark of AD and related neurodegenerative diseases. However, the deregulation of these enzymes and their relationship with ischemia and AD remain unclear. Previously, we reported a mechanism by which the lysosomal enzyme asparagine endopeptidase (AEP) is associated with brain acidosis and AD. In this study, we subjected mice to middle cerebral artery occlusion and found that compared with wild type mice, the ischemia-induced brain injury and motor deficit in AEP-knockout mice are reduced, probably because ischemia activates AEP. AEP cleaves inhibitor 2 of protein phosphatase 2A (I2PP2A), which translocates from the neuronal nucleus to the cytoplasm and produces hyperphosphorylation of tau through inhibition of PP2A. These findings suggest a possible mechanism of tau pathology associated with ischemia.


Asunto(s)
Isquemia Encefálica/metabolismo , Cisteína Endopeptidasas/metabolismo , Lisosomas/metabolismo , Proteínas tau/metabolismo , Animales , Apoptosis/fisiología , Encéfalo/metabolismo , Encéfalo/patología , Isquemia Encefálica/patología , Cisteína Endopeptidasas/genética , Proteínas de Unión al ADN , Femenino , Chaperonas de Histonas , Lisosomas/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/fisiología , Neuronas/metabolismo , Neuronas/patología , Proteínas Oncogénicas/metabolismo , Fosforilación/fisiología
12.
Sci Rep ; 7(1): 13478, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044200

RESUMEN

Hyperphosphorylation of tau and imbalanced expression of 3R-tau and 4R-tau as a result of dysregulation of tau exon 10 splicing are believed to be pivotal to the pathogenesis of tau pathology, but the molecular mechanism leading to the pathologic tau formation in Alzheimer's disease (AD) brain is not fully understood. In the present study, we found that casein kinase 1ε (CK1ε) was increased significantly in AD brains. Overexpression of CK1ε in cultured cells led to increased tau phosphorylation at many sites. Moreover, we found that CK1ε suppressed tau exon 10 inclusion. Levels of CK1ε were positively correlated to tau phosphorylation, 3R-tau expression and tau pathology, and negatively correlated to 4R-tau in AD brains. Overexpression of CK1ε in the mouse hippocampus increased tau phosphorylation and impaired spontaneous alternation behavior. These data suggest that CK1ε is involved in the regulation of tau phosphorylation, the alternative splicing of tau exon 10, and cognitive performance. Up-regulation of CK1ε might contribute to tau pathology by hyperphosphorylating tau and by dysregulating the alternative splicing of tau exon 10 in AD.


Asunto(s)
Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Caseína Cinasa 1 épsilon/genética , Regulación de la Expresión Génica , Proteínas tau/metabolismo , Empalme Alternativo , Enfermedad de Alzheimer/patología , Animales , Conducta Animal , Encéfalo/metabolismo , Encéfalo/patología , Caseína Cinasa 1 épsilon/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Exones , Femenino , Técnica del Anticuerpo Fluorescente , Hipocampo/metabolismo , Humanos , Masculino , Ratones , Fosforilación , Agregado de Proteínas , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Unión Proteica , Proteínas tau/genética
13.
Plant Physiol Biochem ; 110: 226-235, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27328789

RESUMEN

Engineered nanomaterials (ENMs) form the basis of a great number of commodities that are used in several areas including energy, coatings, electronics, medicine, chemicals and catalysts, among others. In addition, these materials are being explored for agricultural purposes. For this reason, the amount of ENMs present as nanowaste has significantly increased in the last few years, and it is expected that ENMs levels in the environment will increase even more in the future. Because plants form the basis of the food chain, they may also function as a point-of-entry of ENMs for other living systems. Understanding the interactions of ENMs with the plant system and their role in their potential accumulation in the food chain will provide knowledge that may serve as a decision-making framework for the future design of ENMs. The purpose of this paper was to provide an overview of the current knowledge on the transport and uptake of selected ENMs, including Carbon Based Nanomaterials (CBNMs) in plants, and the implication on plant exposure in terms of the effects at the macro, micro, and molecular level. We also discuss the interaction of ENMs with soil microorganisms. With this information, we suggest some directions on future design and areas where research needs to be strengthened. We also discuss the need for finding models that can predict the behavior of ENMs based on their chemical and thermodynamic nature, in that few efforts have been made within this context.


Asunto(s)
Nanoestructuras/química , Desarrollo de la Planta/fisiología , Plantas/metabolismo , Semillas/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Contaminantes Ambientales/química , Contaminantes Ambientales/toxicidad , Germinación/efectos de los fármacos , Germinación/fisiología , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Nanoestructuras/administración & dosificación , Nanoestructuras/toxicidad , Estrés Oxidativo/efectos de los fármacos , Desarrollo de la Planta/efectos de los fármacos , Fenómenos Fisiológicos de las Plantas/efectos de los fármacos , Plantas/clasificación , Plantas/efectos de los fármacos , Semillas/efectos de los fármacos , Semillas/fisiología
14.
J Alzheimers Dis ; 52(2): 463-82, 2016 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-27003208

RESUMEN

Abnormal aggregation of Tau in glial cells has been reported in Alzheimer's disease (AD) and other tauopathies; however, the pathological significance of these aggregates remains unsolved to date. In this study, we evaluated whether full-length Tau (Tau441) and its aspartic acid421-truncated Tau variant (Tau421) produce alterations in the normal organization of the cytoskeleton and plasma membrane (PM) when transiently expressed in cultured C6-glial cells. Forty-eight hours post-transfection, abnormal microtubule bundling was observed in the majority of the cells, which expressed either Tau441 or Tau421. Moreover, both variants of Tau produced extensive PM blebbing associated with cortical redistribution of filamentous actin (F-Actin). These effects were reverted when Tau-expressing cells were incubated with drugs that depolymerize F-Actin. In addition, when glial cells showing Tau-induced PM blebbing were incubated with inhibitors of the Rho-associated protein kinase (ROCK) signaling pathway, both formation of abnormal PM blebs and F-Actin remodeling were avoided. All of these effects were initiated upstream by abnormal Tau-induced microtubule bundling, which may release the microtubule-bound guanine nucleotide exchange factor-H1 (GEF-H1) into the cytoplasm in order to activate its major effector RhoA-GTPase. These results may represent a new mechanism of Tau toxicity in which Tau-induced microtubule bundling produces activation of the Rho-GTPase-ROCK pathway that in turn mediates the remodeling of cortical Actin and PM blebbing. In AD and other tauopathies, these Tau-induced abnormalities may occur and contribute to the impairment of glial activity.


Asunto(s)
Actinas/metabolismo , Membrana Celular/metabolismo , Neuroglía/metabolismo , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Proteínas tau/metabolismo , Actinas/efectos de los fármacos , Animales , Western Blotting , Línea Celular , Membrana Celular/efectos de los fármacos , Membrana Celular/patología , Citoplasma/metabolismo , Electroforesis , Técnica del Anticuerpo Fluorescente , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Etiquetado Corte-Fin in Situ , Microscopía Confocal , Neuroglía/efectos de los fármacos , Neuroglía/patología , Ratas , Transducción de Señal/efectos de los fármacos , Transfección , Tubulina (Proteína)/metabolismo , Proteínas tau/genética
15.
J Biol Chem ; 289(40): 27677-91, 2014 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-25128526

RESUMEN

Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2 (PP2A)). In AD brain, I2 (PP2A) is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2 (PP2A) containing a conserved basic motif, (179)RKR(181), which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2 (PP2A) in which the NLS was inactivated by (179)RKR(181) → AAA along with (168)KR(169) → AA mutations. In this model, the mutant NLS (mNLS)-I2 (PP2A) (I2 (PP2A)AA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2 (PP2A) activated CAMKII and GSK-3ß, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2 (PP2A) with PP2A and GSK-3ß but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2 (PP2A)-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Citoplasma/metabolismo , Chaperonas de Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Encéfalo/metabolismo , Núcleo Celular/metabolismo , Citoplasma/genética , Proteínas de Unión al ADN , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Chaperonas de Histonas/genética , Humanos , Señales de Localización Nuclear , Fosforilación , Proteína Fosfatasa 2/genética , Proteína Fosfatasa 2/metabolismo , Factores de Transcripción/genética , Proteínas tau/genética
16.
Neurobiol Aging ; 35(12): 2701-2712, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25034344

RESUMEN

A minor component of coffee unrelated to caffeine, eicosanoyl-5-hydroxytryptamide (EHT), provides protection in a rat model for Alzheimer's disease (AD). In this model, viral expression of the phosphoprotein phosphatase 2A (PP2A) endogenous inhibitor, the I2(PP2A), or SET protein in the brains of rats leads to several characteristic features of AD including cognitive impairment, tau hyperphosphorylation, and elevated levels of cytoplasmic amyloid-ß protein. Dietary supplementation with EHT for 6-12 months resulted in substantial amelioration of all these defects. The beneficial effects of EHT could be associated with its ability to increase PP2A activity by inhibiting the demethylation of its catalytic subunit PP2Ac. These findings raise the possibility that EHT may make a substantial contribution to the apparent neuroprotective benefits associated with coffee consumption as evidenced by numerous epidemiologic studies indicating that coffee drinkers have substantially lowered risk of developing AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Café/química , Modelos Animales de Enfermedad , Fármacos Neuroprotectores , Serotonina/análogos & derivados , Animales , Femenino , Metilación/efectos de los fármacos , Proteína Fosfatasa 2/metabolismo , Ratas , Ratas Transgénicas , Serotonina/farmacología , Serotonina/uso terapéutico
17.
J Alzheimers Dis ; 37(3): 469-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23948903

RESUMEN

Alzheimer's disease is multifactorial and involves several different mechanisms. The sporadic form of the disease accounts for over 99% of the cases. As of yet, there is no practical and widely available animal model of the sporadic form of the disease. In the Alzheimer's disease brain, the lysosomal enzyme asparaginyl endopeptidase is activated and translocated from the neuronal lysosomes to the cytoplasm, probably due to brain acidosis caused by ischemic changes associated with age-associated microinfarcts. The activated asparaginyl endopeptidase cleaves inhibitor-2 of protein phosphatase-2A, I2(PP2A), into I(2NTF) and I(2CTF) which translocate to the neuronal cytoplasm and inhibit the protein phosphatase activity and consequently the abnormal hyperphosphorylation of tau. Employing adeno-associated virus serotype 1 (AAV1) vector containing I(2NTF-CTF) and transduction of the brains of newborn rat pups with this virus, an animal model has been generated. The AAV1-I(2NTF-CTF) rats show neurodegeneration and cognitive impairment at 4 months and abnormal hyperphosphorylation and aggregation of tau and intraneuronal accumulation of amyloid-ß at 13 months. The AAV1-I(2NTF-CTF) rats not only offer a disease-relevant model of the sporadic form of Alzheimer's disease but also represent a practical and widely available animal model. This short perspective on the need to focus on and develop the disease-relevant models of the sporadic form of Alzheimer's disease very much reflects the thinking of Inge Grundke-Iqbal who passed away on September 22, 2012 and to whom this article is dedicated.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedad de Alzheimer/genética , Animales , Humanos , Proteína Fosfatasa 2/metabolismo , Ratas , Proteínas tau/metabolismo
18.
J Biol Chem ; 288(24): 17495-507, 2013 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-23640887

RESUMEN

Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2(PP2A). In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2(PP2A) is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2(PP2A) translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2(PP2A), except when I2(PP2A) was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2(PP2A), inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2(PP2A)-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target.


Asunto(s)
Enfermedad de Alzheimer/enzimología , Cisteína Endopeptidasas/metabolismo , Proteínas tau/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Células COS , Estudios de Casos y Controles , Chlorocebus aethiops , Cisteína Endopeptidasas/química , Citoplasma/enzimología , Activación Enzimática , Femenino , Lóbulo Frontal/enzimología , Hipocampo/enzimología , Humanos , Concentración de Iones de Hidrógeno , Masculino , Fosforilación , Proteína Fosfatasa 2/química , Proteína Fosfatasa 2/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas , Proteolisis , Ratas , Ratas Wistar
19.
J Alzheimers Dis ; 36(3): 503-20, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23635409

RESUMEN

Abnormal intracellular aggregation of tau protein is a pathological condition leading to neuronal death in Alzheimer's disease. Fibrillar and nonfibrillar aggregates of tau protein alter the normal functioning of neurons by disturbing important cellular processes and distinct membranous organelles. However, tau-caused alterations in the nuclear compartment are not totally established so far. In our study we evaluated whether tau protein and its Asp421-truncated variant produce alterations in the normal architecture of the nucleus when expressed in cultured neuroblastoma cells. After 48 hours of transfection, significant deformity of the nuclear compartment with extensive lobulations along the nuclear envelope was observed in SH-SY5Y cells expressing either full-length tau or Asp421-truncated tau. This aberrant formation did not involve either nuclear fragmentation or cell death. The lobulated nuclei were devoid of tau protein, which mostly remained in the cytoplasm in a nonfibrillar state. Degradation of nuclear Lamins was not observed in tau-expressing SH-SY5Y cells, and a cell-cycle analysis did not show aberrant chromosome accumulation. Thus multiple division defects leading to multinucleation were discarded. The lobulated nuclei in tau-expressing SH-SY5Y cells seem to more resemble the multilobular phenotype of the nuclear envelope seen in Lamin-mutated cells from those pathological conditions leading to premature aging. Nevertheless, in our tau-expressing cells, the abnormal formation of cortical and perinuclear rings of tubulin generated by tau binding may be a more feasible mechanism of a nuclear-cytoskeleton generating force that causes the nuclear deformation.


Asunto(s)
Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Neuroblastoma/metabolismo , Proteínas tau/metabolismo , Línea Celular Tumoral , Núcleo Celular/genética , Citoesqueleto/genética , Humanos , Microtúbulos/genética , Microtúbulos/metabolismo , Neuroblastoma/genética , Neuronas/metabolismo , Fosforilación , Tubulina (Proteína)/metabolismo , Proteínas tau/genética
20.
Acta Neuropathol ; 123(1): 133-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083255

RESUMEN

Alzheimer's disease (AD) is multifactorial and, to date, no single cause of the sporadic form of this disease, which accounts for over 99% of the cases, has been established. In AD brain, protein phosphatase-2A (PP2A) activity is known to be compromised due to the cleavage and translocation of its potent endogenous inhibitor, I2PP2A, from the neuronal nucleus to the cytoplasm. Here, we show that adeno-associated virus vector-induced expression of the N-terminal I2NTF and C-terminal I2CTF halves of I2PP2A , also called SET, in brain reproduced key features of AD in Wistar rats. The I2NTF-CTF rats showed a decrease in brain PP2A activity, abnormal hyperphosphorylation and aggregation of tau, a loss of neuronal plasticity and impairment in spatial reference and working memories. To test whether early pharmacologic intervention with a neurotrophic molecule could rescue neurodegeneration and behavioral deficits, 2.5-month-old I2NTF-CTF rats and control littermates were treated for 40 days with Peptide 6, an 11-mer peptide corresponding to an active region of the ciliary neurotrophic factor. Peripheral administration of Peptide 6 rescued neurodegeneration and cognitive deficit in I2NTF-CTF animals by increasing dentate gyrus neurogenesis and mRNA level of brain derived neurotrophic factor. Moreover, Peptide 6-treated I2NTF-CTF rats showed a significant increase in dendritic and synaptic density as reflected by increased expression of synapsin I, synaptophysin and MAP2, especially in the pyramidal neurons of CA1 and CA3 of the hippocampus.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Factor Neurotrófico Ciliar/uso terapéutico , Trastornos del Conocimiento/tratamiento farmacológico , Hipocampo/metabolismo , Neurogénesis/efectos de los fármacos , Fragmentos de Péptidos/uso terapéutico , Péptidos/uso terapéutico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Trastornos del Conocimiento/metabolismo , Trastornos del Conocimiento/patología , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Masculino , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Ratas , Ratas Wistar , Proteínas tau/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...